

Abstract— This paper discusses the concept and architecture
of a machine learning based router for delay tolerant space
networks. The techniques of reinforcement learning and
Bayesian learning are used to supplement the routing decisions
of the popular Contact Graph Routing algorithm. An
introduction to the concepts of Contact Graph Routing, Q-
routing and Naïve Bayes classification are given. The
development of an architecture for a cross-layer feedback
framework for DTN protocols is discussed. Finally, initial
simulation setup and results are given.

I. INTRODUCTION

This paper focuses on the development of a machine
learning based routing algorithm for interplanetary delay
tolerant networks. Many routing algorithms have been
developed for both opportunistic and deterministic delay
tolerant networks. Resource Allocation Protocol for
Intentional DTN (RAPID)[1], Probabilistic Routing Protocol
using History of Encounters and Transitivity (PRoPHET) [2],
Spray-and-Wait [3], and Delay Tolerant Link State Routing
(DTLSR)[4] are among the most well-known for opportunistic
networking scenarios. Within the realm of interplanetary
networking, one of the most popular routing algorithms is
Contact Graph Routing [5] or CGR, which uses the known
contact times and distances of scheduled network assets to
determine an efficient route. Routing algorithms intended for
delay tolerant networks and in particular space networks must
address several issues. Flight hardware is often limited in
terms of processing capability and memory resources, so the
algorithm must be efficient and not use excessive
computations or require a large amount of data storage. In deep
space, there may be a significant propagation delay between
network nodes, so the trading of network status data becomes
costly and may not reflect the current state of the network. In
addition, communication links are often asymmetric, so that a
large amount of data may be sent from a network node, but
there may be limited bandwidth to receive acknowledgments
or other status information.

The work here is an attempt to take a small step towards a
more cognitive communications paradigm by studying
popular machine learning algorithms which may be used to
enhance the functionality of existing routing algorithms. Two
methods which readily adapt themselves to cognitive routing
are reinforcement learning and Bayesian learning. We present

R. Dudukovich is with the Flight Software Branch of NASA Glenn

Research Center, Cleveland, OH 44135 and is a PhD candidate at Case
Western Reserve University (e-mail: rachel.m.dudukovich@nasa.gov). A.
Hylton is with the Architectures, Networks and System Integration Branch of

a hybridized approach which would apply both to the basic
Contact Graph Routing algorithm to allow it to more readily
adapt to changes in the network, while still utilizing many of
the strengths of CGR.

 Delay tolerant networking is an overall architecture and
set of protocols that have been developed to improve
networking capabilities in a variety of scenarios in which an
end-to-end path may not always exist and latency between
nodes may be prohibitively long for some conventional
protocols. DTN techniques have been applied to networks in
rural developing regions, mobile networks in which an end-to-
end path may not exist and space networking. This paper
focuses on techniques that have been applied to space
networking in particular. Space networks have several
defining features which impact their communication
operations. Each node in the network typically has predictable
periods of contact with other nodes, due to the fact that orbital
characteristics impact when communication assets will be in
sight of one another. Deep space communications are
characterized by long propagation delays which make frequent
handshaking or trading of feedback signals between nodes
costly, and algorithms which rely on current information from
other nodes may make decisions based on old information,
resulting in poor performance. In addition, high error rates
may result in multiple retransmissions and require that data are
stored until it can be received successfully. Data must also be
stored between contact opportunities, thus an effective plan of
managing data storage space must be developed or it is
possible that the node will have to either stop accepting
incoming data or begin to delete existing data if its capacity
has become exhausted.

Delay tolerant networking uses a store and forward
approach to mitigate the effects of long delays and disruptions.
Bundles [6], the protocol data unit used in DTNs, are kept in
longterm storage until there is an opportunity for contact with
another node. If this neighboring node is the bundle's
destination or if it leads to a path to the destination, the bundle
may be transmitted to the neighboring node. Bundle protocol
is an overlay protocol which can be used to transfer data across
heterogeneous networks. As such, a variety of lower level
protocols including TCP/IP, UDP, and LTP [7] among others,
may be used.

NASA Glenn Research Center, Cleveland, OH 44135 (e-mail:
alan.g.hylton@nasa.gov). C. Papachristou is with the Computer Engineering
department of Case Western Reserve University, Cleveland, OH 44106 (e-
mail: cap2@case.edu).

A Machine Learning Concept for DTN Routing
Rachel Dudukovich1, Alan Hylton1, Dr. Christos Papachristou2

1NASA Glenn Research Center, Cleveland, OH, USA

2Case Western Reserve University, Cleveland, OH, USA

https://ntrs.nasa.gov/search.jsp?R=20170010412 2020-03-09T16:10:39+00:00Z

There has been much previous work done regarding
machine learning routing and extensive work done on the topic
of probabilistic routing in opportunistic networks. The
approach taken in this paper differs in several ways.
Probabilistic approaches such as PRoPHET [2] and
Opportunistic CGR (OCGR) [8] tend to try to predict the
likelihood that two nodes will encounter one another.
Furthermore, machine learning methods such as Q-routing [9]
have not addressed the challenges specifically found in space
networks, such as the potentially limited bandwidth and long
one-way times for feedback data. The method presented here
attempts to use the attributes of a given contact period to
classify its degree of reliability among a set of potential routing
paths. The algorithm will use data already available from the
lower protocol layers to provide feedback to its decision
making process.

II. INTERPLANETARY SCHEDULING AND ROUTING

A. Scenario
The DTN routing problem best lends itself to a network of

multiple nodes with multiple potential paths as might be
found in a deep space scenario. An example of such a network
might consist of multiple surface assets such as Martian
rovers that perform science data collection on the planet’s
surface. The resulting data are transmitted to relaying
satellites such as the Mars Reconnaissance Orbiter, among
others. The orbiter then sends the data to the earth ground
station. As the Deep Space Network expands, more nodes and
more potential route selections will exist. Figure 1 shows the
conceptual network of nodes this work focuses on. The
network consists of three deep space surface assets such as
rovers, three potential relay satellites and three earth ground
stations. Each rover (nodes 0-2) may transmit and receive
from each relay satellite (nodes 3-5) which then may forward
the data to any of the 3 earth ground stations (nodes 6-8). The
ground stations are interconnected by high bandwidth links.

Figure 1. Conceptual Deep Space Scenario

B. DTN Routing Algorithms
Contact Graph Routing [5] (CGR) is a popular DTN

routing algorithm, particularly for space networks which have
highly periodic contacts between nodes. It is typical in such
networks that communication will be scheduled (manually)
days, weeks or months in advance. In addition to human
scheduling constraints such as operator availability and
sharing resources among multiple users, orbital constraints on
the communication assets make it relatively straight forward
to know when and for how long two nodes will be physically
able to contact one another. Contact Graph Routing uses this
upfront knowledge to determine suitable routes based on

contact times. To do this, CGR uses a contact plan as input to
the CGR routing algorithm. The information in the contact
plan is entered by users either through update commands in a
DTN administration interface program or as configuration
files.

CGR begins with basic network information which is
obtained from user supplied configuration files. These files
define a set of contact messages and a set of range messages.
The contact messages contain the start and stop time that a
given contact opportunity pertains to, the transmitting node
number, the receiving node number and the planned data rate
between the nodes in bytes per second. The range messages
consist of the start and stop time that a given range pertains to,
the transmitting node, the receiving node and the anticipated
distance between the two nodes in light seconds. Upon
initialization, destination variable D is set to the bundle’s final
destination and deadline variable X is set to the bundle’s
expiration time. Bundle forfeit time is set to infinity and the
best-case delivery time is set to zero. The list of proximate
(neighboring) nodes is empty. A list of excluded nodes is
populated with the node from which the bundle was received
and all excluded neighbors for the destination node.

When a new bundle arrives to be forwarded to another
node the CGR algorithm begins with the contact review
procedure as shown in Figure 2.

CGR Contact Review Procedure:
Append D to the list of excluded nodes
For each xmit m in node D’s xmit list:
 If m’s start time is after the deadline X:
 Skip xmit m
 Else:
 If D is a neighbor of the local node S:

Compute Estimated Capacity Consumption of
bundle for tx from local node to D

If m’s residual capacity < Estimated Capacity
Consumption:

 Skip xmit m
 Else:

If D is already in the list of proximate nodes:
 Skip xmit m
 Else:
 Is m’s stop time < forfeit time:
 Set forfeit time to m’s stop time
 Add D to list of proximate nodes

Compute forfeit and best case delivery
times to tx to D
Remove D from excluded node, revert
forfeit and best case times

 Else:
If node S is already in the list of excluded nodes:

 Skip xmit m
 Else:
 If m’s stop time < forfeit time
 Set forfeit time to m’s stop time
 If m’s start time > best-case delivery time

Set best-case delivery time to m’s start time
 Compute estimated forwarding latency

Invoke Contact Review Procedure
recursively with D=S and X =min(T,L)
Remove D from list of excluded nodes,
revert forfeit and best case times

Figure 2. CGR Contact Review Procedure [5]

For simplicity, we focus on the original algorithm given in
[5] and do not include the several updates that have been made
to the algorithm such as ETO-CGR (Earliest Transmission
Opportunity CGR) [10] and overbooking management [10],
though it is recognized that these are very relevant
improvements.

III. MACHINE LEARNING

As a new approach to routing within a network which may
adhere to deterministic schedules as well as be subject to
uncertain disruptions, we propose a machine learning based
routing framework. This solution will provide the adaptive
benefits found in opportunistic routing strategies, while still
adhering to user specified constraints which often exist within
interplanetary networking. To accomplish this, our intelligent
router uses a hybrid approach of both Bayesian and
reinforcement learning. In addition, we leverage many of the
benefits of the CGR algorithm, in that nodes are not required
to transmit additional hand-shaking or status update packets,
since this algorithm uses link state knowledge from the lower
levels of the network stack.

A. Reinforcement Learning
Reinforcement learning is a commonly used machine

learning algorithm in which the learner discovers how to
achieve a desired outcome by maximizing a numerical reward
[11]. Reinforcement learning systems typically consist of four
elements: a policy, a reward function, a value function, and in
some cases, a model of the environment [12]. Q-routing is an
adaptation of the Q-learning algorithm developed for packet
routing [9]. Q-routing uses the estimated end-to-end packet
delivery time for the basis of its reward table, or Q-table. The
table contains a row for each neighbor that a node has. Each
column corresponds to a destination node. The entry for the
row-column pairs in the table is the estimated time required
for a packet to be received at the destination if it was sent from
one of the possible neighboring node choices.

Figure 3 shows a single node in the network and links to
each of its neighboring nodes. Its Q-table contains a row for
each link to a neighbor and a column for every possible
destination in the network. The index of each column
corresponds to each node address. The entry corresponding to
the node’s own address is given a value of 0 (or some other
indication of an invalid value), since it will not transmit data
to itself. There are several approaches that can be taken for
the initial estimate. All entries may be initialized to zero or a
random value. Alternatively, a method can be developed to
try to calculate an initial estimate of the end-to-end delays.
The learner will determine what neighboring node to send a
packet to based on which node minimizes the delivery time.
Once the packet has been sent to the chosen neighboring node,
the neighbor will reply back with what it believes the
remaining time will be to deliver the packet to its final
destination. This response will be used by the first node to
update its Q-table. Each update should incrementally improve
the accuracy of the Q-table, since nodes closer to the
destination should have a more accurate idea of the remaining
delivery time [9].

Figure 3. Node with 3 Links and Corresponding Q-table

Pseudo-code for the Q-routing algorithm is shown in Figure

4. The variable η represents the learning rate, t is the
transmission delay over the link from node x to node y, and q
is the queuing delay at node y. When a packet arrives it enters
the node’s inbound queue. The Q-routing algorithm will
compare the Q-values (delivery time estimates) for
transmitting the packet to its destination via each neighboring
node and select the neighbor with the smallest Q value. When
the packet arrives at its destination, the receiver responds back
with its own estimated delivery time. This is then used to
update the Q-table entry corresponding to that destination.

B. Bayesian Learning
The concept of Bayesian machine learning is based on the

conditional probability that a certain outcome has some
likelihood given that it possesses a particular set of attributes.
In particular, this paper focuses on the Naïve Bayes classifier.
This learning method is used to classify a new instance or
occurrence within a set of possible values based on previous
training data. The learner will determine the probability that a
certain set of attributes most likely correspond to a specific
classification within the training data. When a new occurrence
is presented to the learner, the training probabilities are used
to determine the value v of the new instance from a finite set
of values V based on its attribute vector <a1,a2,...,an> [11].

Bayesian learning is based on calculating the most probable
outcome, often called the maximum a posteriori or MAP

Q-Routing Algorithm
While(true):
 Select a packet from queue

Select node y’ from neighboring nodes with
minimal Q(y,d)

 Wait for response from y’
Update Q(y’,d) in the current node using the new
estimate from y’
Qx(y’, d)=Qx(y’, d)+η[Qy’(z’, d)+t+q-Qx(y’, d)]

end while
If packet received: interrupt while and do:
 Receive packet p from node s
 Select z’ with a minimal Q(z,d)
 Send the value of Q(z,d) back to node s

Figure 4. Q-Routing Algorithm [9]

hypothesis. The Naïve Bayes classifier attempts to find the
most probable value for a current instance VMAP given its
known attributes <a1, a2,...,an> [11]. Equation 3 calculates the
MAP hypothesis as the probabilities of observing the value vj
in conjunction with the attributes <a1, a2,...,an>. This is easily
found by taking the product of the conditional probabilities of
observing vj given each individual attribute. Naïve Bayes
classifier becomes [11]:

푉 = max

∈
푃 푣 |푎 ,푎 , … , 푎 															(1)

Bayes rule can be used to write Eq. 1 as:

			푉 = max
∈

푃 푎 ,푎 , … , 푎 |푣 푃(푣)
푃(푎 ,푎 , … ,푎) 																			(2)

This simplifies to:
푉 = 푃 푎 ,푎 , … ,푎 |푣 푃 푣 																		(3)

																		푉 = max

∈
푃 푣 푃 푎 |푣 . 															(4)

Naïve Bayes classification and decision tree learning have
been proposed in [13] to opportunistically select available
communication channels for cognitive radio sensor networks.
Context information such as neighboring nodes, sink nodes,
current time slots and the currently available channel set are
used to predict link connectivity. An optimal routing path is
obtained from the consideration of two classifiers which
predict link stability.

IV. LEARNING ARCHITECTURE

A. Cross-Layer Information
In order to implement a more cognitive routing application,

some type of feedback is needed to allow the learner to
improve its selection decisions. Many DTN algorithms trade
status vectors [1], [2], [4] to inform other nodes in the network
about its buffer contents, link status and other information.
This is not always desirable considering that transmitting this
status information uses additional network resources and may
become stale due to long distances and link asymmetry (the
feedback may be transmitted on a much slower link). For this
reason, this work proposes the use of convergence layer
protocol report segments to be used as the feedback
mechanism. This type of approach was first suggested in [14]
to implement an end-to-end retransmission framework. It is
following this train of thought that this work follows to
implement a machine learning based router.

An example of this approach could be a sending node using
LTP as a transport protocol. The node will receive reception
reports when red data (reliably sent) segments are lost and will
also have knowledge of the LTP checkpoint timer expiration.
This information can simply be stored in a database and used
by an intelligent router to better understand packet losses and
delays within the network. This imposes no changes to the
LTP protocol and can make use of a very simply logging
mechanism that can also be used for network troubleshooting
by operators on the ground. Furthermore, this approach does
not consume any additional bandwidth as no new packets are
generated that would not otherwise be used. While this does
require the data to be stored, the size is rather minimal and as

stated before, can serve multiple purposes such as network
administration.

 Figure 5 shows a conceptual architecture for an intelligent
router. A source will transmit data to the intelligent router
node to be forwarded to a final destination. In a similar
manner to traditional CGR, the router will consult its contact
plan and range database to attempt to find a suitable path
through the network. Additionally, the intelligent router will
have a local database of stored network statistics consisting of
retransmission requests between a given pair of nodes
corresponding to a periodic contact opportunity, as well as
LTP check point timer expiration data, and estimates of the
amount of data already sent to the prospective nodes. In
addition, if the destination node is an earth ground station,
weather at the location of the ground station, historical and
current for this contact can also be stored in a database and
used to correlate failed or unreliable transmission attempts on
this path. Once a neighboring node has been selected as the
best candidate, data is transmitted in a similar manner to
standard CGR. Any retransmission or timer expirations for
this current contact are then stored to the statistics database
for future routing decisions. It is in this way that the learner
will begin to determine what historically have been the best
routes for a specific destination.

B. The Bayesian Model
 Using the concept of a contact database presented in CGR,
we will further describe the attributes of each contact to create
a model of the network to be used with Naïve Bayes. The
frequency of occurrence of each possible attribute value can
be mapped to the probability that a given contact opportunity
behaved in a reliable or unreliable manner. The statistics
database can contain historical records of the contact
attributes and the reliability observed for each contact
opportunity. This will provide training data for the learner to
determine the probability of reliability for future
transmissions during similar contact opportunities.
 In addition to the contact start and stop times, distance and
data rates, we are interested in other factors which may cause
a selected route to be a less desirable route in comparison to
other opportunities. The historical percentage of
retransmission requests between two nodes at a given time
during its periodic contact opportunities may be a good
indication of how reliable a link is. The amount of traffic sent
to a neighboring node is also relevant to control congestion.

Figure 5. Intelligent Router Architecture

If the bit error rate of a given link is known, this would also
be an important factor. Furthermore, if knowledge of the
weather in the vicinity of a ground station is known, this could
also be an attribute of the model. While knowledge of weather
conditions may not be possible or even desirable for all nodes,
one of the strengths of Naïve Bayes is that its attributes can
easily be omitted without much effect to the algorithm. Table
I summarizes potential attributes and sources for how this data
could easily be obtained.

TABLE I. CONTACT ATTRIBUTES

Attribute Source of Attribute

Retransmission requests Convergence layer, stored in database

Average incoming data rate Network statistics, stored in database

Average outgoing data rate Network statistics, stored in database

Distance Range information from CGR

Bit Error Rate Network statistics or user supplied

Weather patterns User supplied, system telemetry

Our routing algorithm begins at the end of the CGR contact

review procedure in the forwarding decision procedure. It is
here that the list of proximate nodes has been computed and
now CGR will determine the best node to select. We will
consider the prediction of reliability of each candidate
neighboring node determined by Naïve Bayes and the contact
attributes pertaining to each node. This probability can be part
of a multi-criteria decision consisting of the standard selection
produced by CGR as well as the reliability prediction of Naïve
Bayes. Weights can be assigned to both values, so that users
can select which of the criteria, CGR or Naïve Bayes, they
would like to give preference to.
 Once the selection of the best contact opportunity has been
made and the data has been transmitted to the neighboring
node, if a reliable transport protocol has been used for this
link, our reinforcement learning strategy can be used.
Retransmission attempts associated with this contact can be
stored and examined by the learning algorithm. If this
decision has been shown to be a reliable choice, more weight
can be given to this contact for future data bound to the same
destination. Further, a forgetting parameter can be added such
that one node may not begin to become the dominate choice,
thereby creating potentially undesirable congestion in the
network.

V. SIMULATION
We have begun the development of the machine learning

based router by first implementing a simple Q-routing based
approach. This serves as a simple starting point as well as
providing a separate algorithm to be used to compare our
future results. The simulator used was OMNeT++ [15].
OMNeT++ is an open-source discrete event simulator that has
a generic framework which can be used to develop
simulations of communication networks, multiprocessors and
distributed hardware systems and protocol modeling.
OMNeT++ has a component based architecture that can be
used to develop a wide variety of models, but it is very often

used for communication network modeling. The behavior of
the components or modules are defined in C++ classes, some
of which are provided as base classes by OMNeT++, and
some of which are developed by the user. OMNeT++ uses a
message class to pass information between modules. The
messages can be further defined by the user to represent
network packets, status and timing internal messages or any
other type of message the user requires.

The routing sample project provided with the OMNeT++
installation was used as the basis for our Q-routing
simulation. Within the simulation model, the network is
implemented as a set of nodes. Each node consists of three
modules: an application module, a routing module and a
queue module. The application generates and receives
network packets, just as a software application would
generate network traffic. The routing module determines
where to send the packets that are generated by the application
module. The queue module implements a vector of queues for
transmitting and receiving the packets. The connections
between nodes are defined as bidirectional and each has a
delay time and data rate associated with it.

Network packets are generated by the application module.
The rate at which packets are generated is configurable. The
packet format is very simple and consists of a source address
field, a destination address field, the current hop count, the
last hop taken and the first hop taken. These fields are used by
the routing modules to help determine where to send the
packet. For Q-routing, a feedback message is generated by the
routing module of each node and sent as a reply to the node
that last transmitted a packet to the current node. The
feedback message contains the address of the node sending
the feedback message, the final destination address of the
packet that replying node received, the remaining time
estimate until the packet reaches its destination and the
creation time of the packet. This information is used by the
router modules to update their Q-table time estimates.

The routing module will check an incoming packet’s
destination address and choose which of its neighboring
nodes to send the packet to based on which one has a smaller
delay associated with reaching the packet’s destination. In
addition to this policy, network exploration is encouraged by
forcing the router to choose a random link on every 500th
packet. This will ensure that all paths will continuously get
updated once the receiving node sends its response with the
improved time estimate.

Initial simulations have been conducted using a 9 node
mesh as shown in Figure 1. Each node application generates
50 kB packets to transmit to a randomly selected node
following an exponential distribution with a mean which was
varied from 1 to 0.1 seconds. Each simulation executed for
2.7 hours in simulation time (10000 simulation seconds).
Table II shows the link characteristics used. The link
characteristics have been selected such that multiple possible
paths to a destination will have the same number of hops but
a longer propagation delay and/or slower data rate. This was
done as a test to determine that the Q-routing algorithm can
successfully choose the quicker path based the average end-
to-end delays of packets sent on a particular route. Q-routing
was found to react to the network load quite well and as

expected, performed similarly to the shortest path algorithm
under low network load but out-performed the shortest path
algorithm as the network load increased. This shows that
previous end-to-end delays may be a good indication of
congestion or link unreliability along a particular path.

TABLE II. NETWORK SIMULATION PARAMETERS

Link Propagation Delay (s) Data Rate
0-3
0-4
0-5
1-3
1-4
1-5
2-3
2-4
2-5
3-6
3-7
3-8
4-6
4-7
4-8
5-6
5-7
5-8

1 to 30
1
1
1

1 to 30
1 to 30

1
1

1 to 30
1
1

1 to 30
1

1 to 30
1
1
1

1 to 30

200 kbps
2 Mbps

200 kbps
2 Mbps

200 kbps
2 Mbps

200 kbps
200 kbps
200 kbps
200 kbps
2 Mbps
2 Mbps

200 kbps
2 Mbps

200 kbps
2 Mbps

200 kbps
2 Mbps

Figure 6. End-to-end Delays of Q-routing vs. Shortest
Path Algorithms

VI. FUTURE WORK
While our machine learning based router is still very much

a work in progress, we have developed a concept and
architecture for an intelligent router that will not require
additional status packets to provide feedback for the learner.
To improve the fidelity of our network simulation we have
investigated several simulators and emulators focused on
delay tolerant and mobile networks. Particularly, the ONE

(Opportunistic Network Environment) [16] simulator and
CORE (Common Open Research Emulator) [17] have been
used for modelling space DTNs. Going forward, it is our plan
to use CORE to develop a more realistic scenario using Linux
containers to run multiple instances of actual flight-like
software with separate network stacks. CORE has already
been released with an ION-based DTN development kit,
which will give us access to a bundle protocol and LTP
implementation to use as the basis for our development
efforts. In addition, CORE supports custom mobility models
which will allow us to more fully test our routing techniques
during intermittent contact periods.

REFERENCES
[1] A. Balasubramanian, B. Levine, and A. Venkataramani. “Replication

Routing in DTNs: A Resource Allocation Approach,” IEEE/ACM
Transactions on Networking, vol. 18 pp. 596–609, April 2010.

[2] A. Lindgren and A. Doria, “Probabilistic Routing Protocol for
Intermittently Connected Networks,” https://tools.ietf.org/html/draft-
lindgren-dtnrg-prophet-02, 2006.

[3] T. Spyropoulos, K. Psounis, C. Raghavendra, “Spray and Wait: An
Efficient Routing Scheme for Intermittently Connected Mobile
Networks,” SIGCOMM’05 Workshops, Philadelphia, PA, August,
2005.

[4] M. Demmer and K. Fall, “DTLSR: Delay Tolerant Routing for
Developing Regions,” Proceedings of the 2007 Workshop on
Networked Systems for Developing Regions, Kyoto, Japan, pp. 5-1 -
5-6, 2007.

[5] S. Burleigh, “Contact Graph Routing,” Internet Engineering Task
Force, https://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00,
December 2009.

[6] K. Scott and S. Burleigh, “Bundle Protocol Specification”, Internet
Engineering Task Force, https://tools.ietf.org/html/rfc5050 ,
November 2007.

[7] M. Ramadas, S. Burleigh, and S. Farrell. Licklider Transmission
Protocol-Specification, RFC 5326, https://tools.ietf.org/html/rfc5326,
September 2008.

[8] S. Burleigh, C. Caini, J. Messina, and M. Rodolfi, “Toward a Unified
Routing Framework for Delay-Tolerant Networking,” IEEE
International Conference on Wireless for Space and Extreme
Environments (WiSEE), Aachen, Germany, September 2016.

[9] M. Littman and J. Boyan, “A Distributed Reinforcement Learning
Scheme for Network Routing,” Proceedings of the First International
Workshop on Applications of Neural Networks to
Telecommunications, pp. 45-51, 1993.

[10] N. Bezirgiannidis, C. Caini, D. Padalino, M. Ruggieri, and V.
Tsaoussidis. “Contact Graph Routing Enhancements for Delay
Tolerant Space Communications,” 7th Advanced Satellite Multimedia
Systems Conference and the 13th Signal Processing for Space
Communications Workshop (ASMS/SPSC), September 2014.

[11] T. Mitchell, Machine Learning, C. I. Liu, Ed.: McGraw-Hill, pp. 367-
381(Reinforcement Learning) and 157-184 (Bayesian Learning),
1997.

[12] A. Barto and R. Sutton, Reinforcement Learning: An Introduction,
Thomas Dietterich, Ed. Cambridge, MA, USA: The MIT Press, 1998.

[13] Z. Jin, D. Guan, J. Cho and B. Lee. “A Routing Algorithm Based on
Semi-supervised Learning for Cognitive Radio Sensor Networks,”
SENSORNETS, pp. 188-194, 2014.

[14] N. Bezirgiannidis, “Accurate Estimation of End-to-End Delivery
Delay in Space Internets: Protocol Design and Implementation”, PhD
thesis, Democritus University of Thrace, 2015.

[15] OMNet++ Discrete Event Simulator, https://omnetpp.org/.
[16] ONE Simulator, https://akeranen.github.io/the-one/
[17] CORE, https://www.nrl.navy.mil/itd/ncs/products/core

https://tools.ietf.org/html/draft-lindgren-dtnrg-prophet-02
https://tools.ietf.org/html/draft-burleigh-dtnrg-cgr-00
https://tools.ietf.org/html/rfc5050
https://tools.ietf.org/html/rfc5326
https://omnetpp.org/
https://akeranen.github.io/the-one/
https://www.nrl.navy.mil/itd/ncs/products/core

	A Machine Learning Concept for DTN Routing
	I. INTRODUCTION
	II. Interplanetary Scheduling and Routing
	A. Scenario
	/
	B.	DTN Routing Algorithms

	III. Machine learning
	A. Reinforcement Learning
	B. Bayesian Learning

	IV. Learning Architecture
	A.	Cross-Layer Information
	B.	The Bayesian Model

	V. Simulation
	VI. Future Work

